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With various methods we demonstrate the establishment of stable, spatially extended wave forms underlying
a spatiotemporally chaotic state in open flow systems consisting of coupled oscillators. Results are obtained for
an experimental system consisting of unidirectionally coupled diode resonator circuits as well as for the
coupled map lattice, a numerical model made up of coupled logistic maps. Both systems exhibit convective
instability and high-dimensional, complex spatiotemporal behavior. In each system spatial wave forms are
stabilized by fixing appropriate temporal periods at the first oscillator. The other elements assume the period-
icity of the first, yet exhibit spatially varying amplitudes which have an associated wavelength and are in

general spatially quasiperiodic.

PACS number(s): 05.45.+b, 47.52.+j

The recent surge in the development and application of
control techniques for temporally chaotic systems of varying
complexity has naturally sparked an interest in the control of
spatially extended, or spatiotemporal systems [1-6]. While
“spatiotemporal” covers a diverse class of numerical and
physical systems, here we focus on one-dimensional systems
that possess a preferred direction to propagate information
out of the system, so-called open flows [7]. Fluid flow in a
pipe and channel flow are typically cited prototypes of open
flow systems in which a transition from a coherent structure
(laminar flow) to fully developed turbulence further down-
stream is observed within certain parameter ranges. In these
instances, open flow systems become convectively unstable:
microscopic fluctuations are amplified exponentially while
being convected through the system. The simplest and com-
putationally most feasible model of an open flow system is
the one-dimensional lattice of asymmetrically coupled logis-
tic maps, as extensively studied by Kaneko [8]. Being con-
ceptually uncomplicated (as compared to the equations of
motion for, e.g., a fluid flow), it nevertheless displays highly
complex and rich patterns. With the first site fixed on the
unstable fixed point of a single logistic map, one observes
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spatial period doubling (a doubling of the temporal periodic-
ity as the spatial index is increased) leading to chaos at
higher sites. This phenomenon was shown by Liu and Gollub
to be involved in the transition from periodic waves to spa-
tiotemporal chaos in one-dimensional film flow [9].
Coupled map systems have provided a convenient testing
ground for pioneering work in the area of controlling spa-
tiotemporal chaos. Auerbach [3] has demonstrated the stabi-
lizing of convectively unstable periodic states in an open
flow model using modified chaos control feedback tech-
niques. By employing feedback based on local information
to sites distributed periodically in space, spatial period dou-
bling was suppressed and coherence maintained throughout
the length of the lattice. The resulting states are temporally
periodic and spatially uniform. Meanwhile, Gang and Zhilin
[2] have stabilized very different states that are periodic in
time and space in an otherwise chaotic coupled map lattice.
In this case the system possessed symmetric coupling and
periodic boundary conditions, hence no preferred direction
of propagation. Similarly, methods have been successful in
controlling chaos in spatially continuous media described by
nonlinear, one-dimensional partial differential equations.
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FIG. 1. Open flow circuit consisting of 32 diode resonators
coupled unidirectionally to the right. The strength of the coupling is
dependent on the coupling resistor R .

Gang and Kaifen [1] and Aranson et al. [5] have shown that
a single control point in space is sufficient to stabilize ex-
tended systems of limited size. In this paper we demonstrate
single-point control of spatially varying states in an open
flow lattice of arbitrary size.

Recently, Willeboordse and Kaneko [10] found that under
certain conditions in an open flow coupled map lattice, spa-
tial period-doubling bifurcations lead to states which are
temporally periodic and spatially quasiperiodic. Once estab-
lished, these structures presumably persist out to infinity in
the spatial direction, indicating their stable nature and appar-
ent immunity to noise amplification. However, the spatial
region preceding the stable wave forms remains convectively
unstable, thus highly sensitive to any level of noise. Conse-
quently, the addition of the smallest noise levels (i.e., in the
last digit) destroys all stable structure downstream through
macroscopic fluctuations, resulting in complex, turbulent be-
havior. Because of the extreme sensitivity to noise, we do not
expect that these stable states will be found in an experiment
by the method in [10], that is, fixing the first site to a con-
stant value. We report that by controlling the first site into
properly chosen periodic orbits, states similar to those re-
ported above become stable throughout the length of the lat-
tice. We demonstrate this phenomenon in an experimental
system of coupled electronic circuits and in a system of
coupled logistic maps.

Our experimental system consists of 32 coupled diode
resonator circuits [11] driven by a sinusoidal source at a
frequency of 70 kHz. The individual circuits are comprised
of the series combination of a 30 mH inductance and a Gen-
eral Instruments 852 silicon diode. Individually, the circuits
follow the period-doubling route to chaos as the drive volt-
age is increased and form nearly one-dimensional first return
maps by mapping the peak current through the diode. The
diodes were matched based on their bifurcation sequences
such that all go chaotic at nearly the same drive voltage.
Placing a buffer and resistor between neighboring diodes, as
shown in Fig. 1, provides a one-way coupling proportional to
the difference (V,— V'), where V, is the voltage across the
diodes and i represents the spatial index. The coupling
strength is determined by the coupling resistor, R, chosen
to be 18.2 k). This choice results in spatial features with
appropriate scale in relation to the size of our system. The
boundary conditions are open so that the first circuit is inde-
pendent of the rest.

Throughout the experiments, the system is driven well
within the chaotic regime of the individual circuits (drive
voltage = 2.7 V,,,.;). The resulting state is illustrated in Fig.
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FIG. 2. The dynamics of the diode resonator open flow system.
In both plots several snapshots of the system are taken, the lines
connect the current peaks, I, sampled simultaneously. (a) The first
site is chaotic, the next few sites follow nearly the same trajectory,
and eventually more complex behavior develops after about 10
sites. (b) The first site is controlled in a period-1 orbit leading to a
spatial period-doubling bifurcation and eventual chaos downstream.

2(a). Snapshots of the system are taken by simultaneously
sampling the current at all sites. In the figure, 11 snapshots
taken at arbitrary times are plotted and indicated by the lines
connecting the simultaneous data points. The coupling be-
tween sites has a synchronizing effect which slaves the first
few sites to the dynamics of the first, as indicated by the flat
regions at low site numbers. The convectively unstable na-
ture of the system works against the synchronizing effect and
eventually produces complex, high-dimensional dynamics
downstream. Keeping the drive voltage the same, if we fix
the first diode resonator to the unstable period-1 fixed point
[12], the following few sites assume the period-1 orbit as in
Fig. 2(b). The period-1 solution gives way to a period-2 orbit
for a number of sites, and eventually all periodic behavior is
destroyed for high site numbers.

Although spatially coherent or laminar states are convec-
tively unstable and give way to spatial period doubling and
turbulence, we have found that controlling certain periodic
orbits at site 1 results in stable spatial wave forms which
extend throughout the length of the lattice of diode resona-
tors. An example is given in Fig. 3 in which the first site has
been stabilized into a period-5 orbit. Typically, a flat, spa-
tially coherent region is formed by the first few sites before
the spatial oscillation sets in. This region, which is barely 3
sites in the figure, is sensitive to the control parameters as
well as the coupling resistance. The spatial structure of the
period-5 state is characterized by a wavelength of approxi-
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FIG. 3. The spatial waves associated with a controlled period 5
at site 1 in the diode resonator system. After a short spatial tran-
sient, this spatiotemporal state is characterized by a wavelength of
approximately 8.3 sites and a temporal winding number of 2/5.
Every site is in a period-5 orbit, so the subsequent iterates plotted
repeat every five cycles.

mately 8.3 sites, so that there is an average phase shift of
about 43° between sites at a given time. Besides the period-5
state, we have stabilized waves with temporal periods includ-
ing 7, 8, 9, 11, 13, 14, 18, and 20 in the same manner.

By employing periodic boundary conditions in our sys-
tem, i.e., coupling the last site to the first, we observe quasi-
periodic behavior in the individual diode resonators and an
integral number of spatial wavelengths in the loop. For a
drive voltage of 2.30 V,,,, the return map at any given site
i and cycle number n, I, , vs I', is a distorted ringlike
attractor as shown in the double exposure photograph of Fig.
4(a). The bright dots indicate a period-5 mode-locked state at
a slightly different drive voltage. In this state the map reveals
that the temporal winding number of the individual elements
of the system is 2/5, i.e., the attractor viewed as a rough
circle is traversed twice per five drive cycles. The spatial
behavior is characterized by Fig. 4(b) in a plot of I‘*! vs
I, simultaneously sampled neighboring currents. This so-
called spatial return map shows the relative phase difference
between neighboring sites. In the quasiperiodic regime, this
time-exposure photo (many n values) produces a continuous
map, which appears identical for any two neighboring sites
in the lattice. At different drive amplitudes the maps reveal
very rich, high-dimensional dynamics as well as numerous
windows of stable mode-locked states with periods from five
to hundreds of drive cycles. Spatially the locked states form
wave patterns which have an integral number of wavelengths
in the length of the lattice. Changing the lattice size reveals
similar waves of different temporal period and spatial wave-
length. For the coupling resistance used, we observe tempo-
ral winding numbers between 0.38 and 0.44 and wavelengths
from 7 to 16 sites. The tendency of the system to favor a
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FIG. 4. The dynamics of the closed-loop system of diode reso-
nators. (a) Double exposure of a single return map at any site i in
the loop. The distorted ringlike map indicates the quasiperiodic na-
ture of the system, and the five bright dots show a period-5 locked
state at a nearby drive voltage. (b) Spatial return map, a mapping of
neighboring sites at equal times. The map indicates the phase dif-
ference between sites and determines the spatial structure of the
wave forms. The time exposure taken in the quasiperiodic regime
shows multiple n values, making the map appear continuous.

winding number near 0.4 is consistent with some low-period
orbits being unobserved as solutions of the system (e.g., pe-
riods 2, 3, 4, and 6). By applying periodic boundary condi-
tions we have established the existence of stable spatiotem-
poral waves in the system, some of which we observe in the
open flow system by controlling the proper orbit at the initial
site.

Presumably, to stabilize the open flow system, the require-
ment is to mimic the dynamics of a single element of the
closed-loop locked states at the first site by establishing the
desired temporal periodicity. We do this in one of two ways:
(i) by applying one of the recently developed chaos control
techniques to site 1 as described above, or (ii) by simulating
a “site 0”” with an arbitrary wave form generator. In the latter
case we digitally store the voltage trace from a single ele-
ment of the closed-loop system in a mode-locked state. Play-
ing back the stored wave form, we apply the output of the
wave form generator to the first diode through a resistor of
size Rc. The otherwise chaotic open flow system then be-
comes stabilized into the previously observed mode-locked
state. Typically, in method (i), once the temporal periodicity
of the first diode resonator is established, the system down-
stream assumes a state observed in the closed loop. The first
few sites serve as transient states which connect the dynam-
ics of the one-dimensional temporal return map of the first
site to the significantly different, circular maps of the closed
loop system. In the second method, no transient is observed
since the dynamics induced at site 1 match the locked state
downstream.

Finally, by coupling a lower frequency sine wave to site 1,
we have found that it is sufficient to stabilize the system by
introducing an appropriate frequency. The method is similar
to method (ii) in that the sine wave simulates a diode reso-
nator voltage in a periodic orbit whenever the ratio of the 70
kHz drive to the wave generator frequency is rational. Some
of the extremely high-period (>100) locked states observed
in the closed loop can be reproduced with this method. For
example, in the closed-loop system we observe a locked state
of period 28 with winding number 11/28 and a spatial wave-
length of 16 sites. Returning to the open flow system, we
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inject into the first site a sine wave of frequency equal to the
product of the winding number and 70 kHz (27.5 kHz). All
sites in the lattice assume a period-28 orbit, and again a few
sites connect the sine wave at site O to the stable spatiotem-
poral state downstream.

To numerically verify our experimental results, we repre-
sented each diode resonator by a logistic map—motivated by
the nearly one-dimensional nature of the return map of the
diode resonator. The one-dimensional lattice of unidirection-
ally coupled logistic maps

X =f) + el f(x D= f(x)] (1)

(ie[1,N], n= time, f(x)=rx(1—x), xe(0,1)) was
taken as a model for the diode resonator chain. With the
system size N being chosen up to several thousand, the ex-
treme long range stability of the waves could be verified. For
the open flow case the first site was controlled into various
high-period orbits. The resulting spatial wave forms are in-
sensitive towards injection of random perturbations up to
0.05 delivered to a single element, and match the experimen-
tal results quite well. Figure 5 shows several temporal return
maps of successive sites, locked into a period-5 orbit [notice
the resemblance with Fig. 4(a)]. The circular shaped attractor
is formed by overplotting the return maps of all sites. The
line connecting simultaneous amplitudes illustrates the phase
advance from site to site, picturing the spatial wave. The
spatial return map is also included in the figure to illustrate
the spatial quasiperiodic behavior. The almost identical orbit
can be captured when applying periodic boundary condi-
tions. Fine adjustment of the parameters then causes switch-
ing between mode-locked states, i.e., each site being peri-
odic, and drifting waves. In the latter case the return map of
a single site fills out the circlelike attractor, indicating tem-
poral quasiperiodicity. For the locked period-5 orbit the
winding number is again 2/5 and the wavelength close to six
sites. Additionally, we found that exciting the first site with
an appropriate sine wave stabilizes the entire coupled map
system, reproducing the experimental results.

Summarizing, we have stabilized different spatial wave
patterns in a convectively unstable system, both in experi-
ment and numerical simulations. A single controller was em-

G. A. JOHNSON, M. LOCHER, AND E. R. HUNT 51

n+1

Xn xi

FIG. 5. The stabilized period-5 wave in the coupled map lattice.
The periodic return maps for sites 260—264 are pictured as the large
dots plotted over the map formed by overplotting all sites. The line
connects a set of simultaneous points indicating the spatial wave
form. The return maps have winding number 2/5 and bear a strong
resemblance to the map of Fig. 4(a). Also pictured is the spatial
return map, generated by plotting neighboring sites at a single point
in time at all sites, similar to Fig. 4(b). Here € =0.547 and r=3.785.

ployed at the first site of the diode resonator chain in order to
stabilize the 32-element system. With a number of stabilized
orbits at site 1, we observed a short coherence length fol-
lowed by the abrupt formation of stable spatial wave forms
throughout the lattice. Nonfeedback methods were also used
to provide proper conditions at the first site resulting in
stable spatiotemporal states. Results from the coupled logis-
tic map system parallel the observations of the experiment
quite well.
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